
A Numerical Determination of the Modulus of Doubly 
Connected Domains by Using the Bergman Curvature 

By J. Burbea* 

Abstract. The moduli of doubly connected domains are computed by means of the 
Bergman curvature associated with the Bergman function of the domain. The moduli of 
nonconcentric annuli, elliptic rings, confocal elliptic rings, squares inside circles and squares 
inside squares are determined by this method. 

1. Introduction. The moduli of doubly connected domains are computed by 
means of the curvature associated with the Bergman kernel function of the domain. 
The method is based on the fact that the curvature assumes a minimal value only on a 
distinguished unique curve in the domain. This curve is the conformal pre-image of the 
circle Izj = -Vr which lies in the annulus { z: r < Izj < 1 }, O < r < 1, where r is the 
modulus of the given doubly connected domain.** Further, because of the conformal 
invariance of the curvature, its minimal value on the distinguished curve must coincide 
with the curvature of the annulus evaluated on the circle jzj = VIr. This gives us at 
once an effective method to determine the modulus r of the given doubly connected. 
domain. 

As an example of this method, we determine the moduli of nonconcentric annuli, 
elliptic rings, confocal elliptic rings, squares inside circles and squares inside squares, 
and compare numerical results to known data. We also compute and analyze the 
behavior of the curvature in the annulus. The computation is programmed in Fortran 
and run on the Golem-1 and CDC 1604A at the Weizmann Institute of Science, 
Rehovot, Israel. In general, the method gives good accuracy. For fourfold symmetric 
domains the method can be simplified to decrease the amount of computation needed 
to yield the same accuracy as would be achieved by the method for the general case. 

2. General Theory. Let D be a bounded finitely connected domain in the z-plane. 
The theory of Hilbert spaces with reproducing kernels allows us to introduce the 
Bergman kernel function KD(Z, t), z, t E D. KD(Z, t) is uniquely determined as the 
reproducing kernel of the space of all square integrable analytic functions in D, 
S2H(D). As such [1, p. 9], the Bergman kernel function is analytic in z E D (t fixed) 
and anti-analytic in t E D (z fixed). It is more convenient, especially when the con- 
nectivity of D is greater than one, to restrict ourselves to the subspace of S2H(D), 
?0 H(D), which consists of all functions of S2H(D) which have a single valued in- 
definite integral. This subspace is closed and, thus, it is also a Hilbert space with the 
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reduced Bergman kernel KJ)I(z, i). Henceforth, we simply write, unless otherwise 
specified, KD(z, i) instead of KD)(z, i) and ?2H(D) instead of ?2H(D). 

Let I 4),(z)}, v = 1, 2, 9.. , be a complete orthonormal sequence of functions in 
z2 _ C 2H(D), that is, 

(2.1) (R', 4)- f,(z)4,(z) dx dy = 

Then the kernel KD(Z, i) is given by 
ax 

(2.2) KD(Z, 1) = E P,(Z)4'(t). 
v-1 

This sum is independent of the choice of the complete orthonormal system and it 
converges absolutely and uniformly on each compact subset of D. 

We introduce the Bergnan metric 

(2.3) dSD = KD(z,f) 1dzI2, 

which is invariant under conformal mapping. The Gaussian curvature of this metric 
is given by 

-2 49 log K 
(2.4) CD(Z) =K Oz a l K KD(Z, 2). 

We refer to this curvature as the Bergman curvature. It has the following important 
properties: 

(i) CD(z) is strictly negative; 
(ii) CD(z) is invariant under conformal mapping; 

(iii) CD(z) has boundary values -4Tr (see [1, p. 39]). 
Property (ii) can be proved directly from the fact that (2.3) is a conformal invariant or 
by the use of the "theorema egregium" of Gauss. 

From property (ii) and the Riemann mapping theorem, it follows that CD(z) is a 
universal constant for all simply connected domains D, and, in fact, [1, p. 35] 

(2.5) CD(z) -47r, D simply connected domain. 

It will be shown later that if D is doubly connected, then CD(z) is not a constant. The 
function CD(z) can be used to determine whether two domains, say D and D*, can be 
mapped conformally onto each other. If this is the case, one can also construct the 
mapping function. 

We introduce the quantity 

(2.6) JD(Z) = -iCD(Z), 

or, by (2.4), 

1 02 log K 
(2.7) JD(Z) -K 9z 092 K KD(z, 2). 

We conclude this section by enumerating the properties of JD(z) corresponding to 
properties (i), (ii) and (iii) of CD(z) in the following theorem: 

THEOREM 2.1. Let D be a domain in the z-plane, then 
(i) JD(z) is strictly positive; 

(ii) JD(z) has boundary values 27r. 
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Let w = w(z) be a conformal mapping which maps D onto the domain D* in the w-plane, 
then 

(2.8) dSD = dSD*, JD(Z) = JD*(W). 

3. The Modulus of a Doubly Connected Domain. Let D be a doubly connected 
domain in the w-plane bounded by two Jordan curves C1 and Cs for which 
C1 n C2 = 0. As is well known, D can always be mapped conformally onto the 
annular domain, 

(3.1) R = {z: r < jzj < I}, 0 < r < 1. 

The number r is called the "modulus of D" and it characterizes completely the con- 
formal equivalence class of D. Furthermore, since the only conformal mappings of R 
onto itself are of the form so(z) = -yz or sp(z) = 7r/z, where 171 = 1, it follows that if 
w = w(z) furnishes one particular mapping of D onto R, then all conformal mappings 
of D onto R are of the form qo(z) = 7w(z) and Vp(z) = yr/w(z). Thus, given a point 
t E D, the set of all its possible images consists of precisely two circles (which de- 
generate to one circle if Iw(t)l = V\r), namely IVI = Iw(t)0IS?I ' r/lw(t)l ('P = (P(Z)). 

Let J(z) = JR(z), since R can be mapped conformally onto itself in such a manner 
that the points t, r E R will correspond to each other whenever Iti = Ir or Itl = r/lTl, 
it follows that J(z) (or any other conformal invariant) must be a constant along each 
circle Izl = A, A constant, and the constant values associated with the pair of circles 
Izl = A and lzl = rIA must coincide. Thus, we can write 

(3.2) J(z) = J(IzI) = J(r/lIz), z E R. 

Equivalently, if P2 = zZ, then, 

(3.3) J(Z) = J(p) = J(r/p), r < p < 1. 

By a detailed use of the theory of elliptic functions [12, pp. 101-102], [1, p. 41], one 
can show the following important theorem. 

THEOREM 3.1. In the annulus R, J(z) is a positive function of p = Izi, p E [r, 1] 
satisfying (3.3). Furthermore, J(p) has only one maximum at p = V\r, while 

(3.4) J(1) = J(r) = 2r. 

It should be emphasized that the use of the "reduced" Bergman kernel function is 
very essential in the proof of Theorem 3.1, since the theorem is not true for the usual 
Bergman kernel function. It could be mentioned, however, that a similar theory for 
determining the modulus of a doubly connected domain, by using the usual Szego 
kernel function, holds (see [4]) and yields the same results. 

Next, it can be shown that the maximum value J(V\r) is itself a monotone function 
of r. This gives us at once an effective method to determine the modulus of any doubly 
connected domain D. First, we determine the modulus r of D by solving the implicit 
equation 

(3.5) J(v/r) = max JD(Z). 
zED 

Since J(V\r) is monotone in r, (3.5) has a unique solution r, which is the modulus of D. 
Furthermore, since JD(Z) is not constant, by determining its level lines and their 
orthogonal trajectories, we can find numerically the mapping function. 
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4. The Numerical Algorithm. Let D be a doubly connected domain in the z-plane 
bounded by the Jordan curves C1 and C2 (C1 C\ C2 = 0) and suppose the origin lies in 
the "hole" of D. As is well known, the set 'z I 

' n 5 -1, forms a complete set in 
22H(D) if D separates 0 from o. By applying the Gram-Schmidt procedure, we 
obtain the sequence of orthonormal functions I Pn(z)1 I-O, n A -1. For this purpose, 
it is more convenient to reorder the powers I Zn n- = n 0 -1, by the following rule 

(4.1) i1 = 1, 12 = Z, On = - (-1)*+1((n+i)/21 n > 2. 

Then, the complete orthonormal sequence of functions {Pn(z)} In'I is given by 

(4.2) Pn(z) = j ankkl, n = 1, 2, * 
k-1 

The { an ,} are determined recursively by 
/n n 1/2 

(4.3) ank = Cnk/(Z , Cnj(1i,. i,)) I k = 1, , n; n = 1, 2, * 

where 
n-1 i 

i-k \i a1 f,, , k= ~ ni (4.4) Cnn =1; Cnk =-Eai 4 iQ\nIO) k 1,2 

We can use Green's formula to evaluate the moments 

(4.5) (f3m! On) f min dx dy =- fn 3m2 dz, n =1, 2, 

((4 .6 ) ( -= fD mn dx dy 
(4.6)D 

2i{(-1) [(n + 1)/2] + 11 1 d > 2, 

where 

(4.7) C= aD =C1UC2 

The kernel function is then given by 

(4.8) KD(Z, 2) = E Pn(Z)Pn(Z) 
n-1 

while, by (2.7), 

(4.9) JD(z) = K3 [KK - KK], K- KD(ZZ), 

where 

(4.10) K. =E Pn(Z) Pn(Z), Ki = Pn(Z)PnAZ), K,i = . P(z)Pn(z). 
n=i n-i n1 

It can be shown that 
c 3 n /r nrn 

(4.11) J(-Vr) + r E 1 -r2 ' 
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and further, that this quantity is monotonically decreasing in r, 0 < r < 1. The 
modulus r is the unique solution of the equation 

(4.12) max JD(Z) = J(V\r). 
sED 

The computational method is as follows. The doubly connected domain D is 
given by its boundary C = C1 U C2, (C1 n C2 = 0), which is described by the set of 
2Mcomplex numbers Z,k = Xr + iy,k, Z,k E C,, V = 1, 2; k = 1, 2, ... , M. Numer- 
ically, the moments (4.5) and (4.6) are approximated by finite sums of M terms 
"balanced" with conveniently chosen positive weights, that is, 

I1 
(4.13) (Om, On) = 21n [F (M; m, n) - F2(M; m, n)], n = 1, 2, 

where, 
M 

(4.14) F (M; m, n) = k m k [(m+l)/2rnk v= 1, 2; m > 2, 
k-1 

and 
M 

(4.15) F (M; m, n) W(,)Z.- v-n 1,2; m = 1, 2. 
k-i 

Next, 

(4.16) 2i{(-1) +R(n + 1)/2] + 1 (G1(M; m, n)-G2(M; m, n)], 

n > 2, 

where 
M 

(4.17) G,(M; m, n) = k P Z 
k-1 

v= 1, 2; m > 2, 

and 
M 

(4.18) G,(M; m, n) = L W(r)z m-lz( +[(nl)/21+ V = 1, 2; m = 1, 2. 
k-I 

Here, Wkv), v = 1, 2; k = 1, 2, *, M, are the positive weights chosen such that the 
finite sums approximate the integrals over C. Then, using (4.3) and (4.4), we obtain an 
approximation of { Pk(Z))} n" see (4.2), whence we form the sum 

(4.19) K(z, 2) = E Pk(z)PA(z). 
k-i 

After formal differentiation of the { P(z)}, we obtain the quantity Jn(z), (here 
limn, Jn(z) = JD(z)), see (4.9) and (4.10). 

Specifically, we assume that the two bounding curves C,, v = 1, 2, are starshaped 
with respect to z = 0.*** Next, we choose 2N complex numbers c,k E C, such that 

* * * A modified method can be given if the two bounding curves are not starshaped. 
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(4.20) tsk = p,,e' 9, v = 1, 2; k = 1, 2, ..., N, 

and then we form the real functions 

(4.21) g(n)(p) = Jn(pe"'h) P E [P2kg P1k], k = 1, 2, *.., N. 

On the interval [P2k, P1k], gk")(p) are real and positive functions such that 

(4.22) lim gk)(P,k) = 27r, v = 1, 2; k = 1, , N. 
n-_ 

Formula (4.22) is interpreted as follows: 

lim lim g(n)(p) = lrn lrn Jn(pet O) 
P4Pk ft-n 0 P_Pvk nt-- 

= lim JD(pe) JD(P,keC)= 27r. 
P4Pvh 

Theoretically, this convergence always takes place if D is assumed to have the 
property that through t, (v = 1, 2; k = 1, 2, * * * , N) two circles can be constructed in 
such a way that one circle is interior to D and the second is exterior to D. Clearly, our 
assumptions on D satisfy the above requirements. Moreover, by [1, p. 39], (4.22) will 
be true if 

larg (pe"i' - p,ie) C < + 1 OI 

which is trivially valid as long as the approach is along the line pe'9". We first find 
the maximal points of g(n)(p) by the Fibonacci search (see [8], (1OD.t Consequently, we 
obtain the quantities 

(4.23) gk (Pk) = max gk (P), p E [p2k9 PlkC k = 1, 2, * , N. 

Next, we form 

(4.24) gm) (P) = max gn) (Pk) k = 1, 2, ... , N, (1 ? m ? N). 

We also truncate J(v/r) in (4.11) to obtain 

1 1 n k3r; /n kr 
= 

rk.. - - c (4.25) Jn(v'r) = + I k r/ 

Consider 

(4 .26) S(r) = Jn(V\Ir) - gn (P 

The approximate modulus r of D is determined from the implicit equation 

(4.27) S(r)=O, 0 < r < 1. 

Numerically, we find the solution of (4.27) by the "Newton-Raphson iteration meth- 
od." The quality of the approximation and the rate of convergence is dependent on the 
number of the boundary points 2N and the number of functions n of f , actually 
used in the orthonormalization. 

t It should be remarked that, in order to apply this method, one has to verify that every level curve 
is starshaped with respect to z = 0 provided that two bounding curves C, (v = 1, 2) are so. This is, 
however, a simple consequence of the minimum principle for harmonic functions, which, for com- 
pleteness, will be included in the Appendix of this paper. 
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5. Fourfold Symmetric Domains. Let D be a doubly connected fourfold sym- 
metric domain around the origin. Suppose again the boundary of D is given by 
C = C1 U C2, (C1 n C2 = 0). Because of the fourfold symmetry, the boundary 
components C, v = 1, 2, are composed of four symmetrical parts 

4 

(5.1) C, = 4J C,k, V = 1, 2. 
k-i 

The moments (zm, z#) are given by 

WI I z)= O, m-n O(mod 2), 

(5.2) _ 2 
(5.2) = n + l~ (All - A21)t m- n-O (mod 2), 

where 

(5.3) A,, = f Iz12m Im [2n-m+l]dz, v = 1, 2. 

When the powers Iz"} n $ -1, are reordered according to the rule (4.1), we 
obtain the complete orthonormal set of functions {P,,(z)} l as given in (4.2)-(4.4); 
however, 

(5.4) am, = m", Cm,n = cm", m - n 0- (mod 2), 

(5.5) amn = Cmn = 0, m- n # O (mod 2). 

Therefore, P,(z) = Pn(2) and, by (4.19), 

(5.6) Kn(z, z) k(Z)Pk() 
k-1 

We obtain the following significant simplification. First, "half" of the moments 
needed for the orthonormalization vanish, and second, the remaining moments are 
real. Therefore, the amount of computation needed for the orthonormalization is 
decreased significantly as compared to the case where the domain is not fourfold 
symmetric. 

Numerically, we again use the scheme described in (4.13)-(4.18) to evaluate the 
moments (I38,m 3,,n) where, by (5.2) and (5.3), 

(5.7) A,,1 = f Im(zmzn+I] dX + f Re[z"2&+l] dy, v = 1, 2. 

Furthermore, because of the fourfold symmetry, we actually take N1 = [N/4] + 1 

boundary points instead of N. 

6. Numerical Results. We compute the moduli of some doubly connected 
domains and compare the numerical results to some known data. The computation 
is done according to Sections 4 and 5. 

The results are presented in the following six examples. Each example is followed 
by several remarks relevant to that example. Especially, we mention in which way we 
evaluated the moments (4.5) and (4.6); however, wherever possible (as in the case of 
Examples 1, 2 and 5), we also exploit the analytic simplicity of the circular contours 
involved. First, we consider the following simple example. 
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Example 1. Consider the concentric annulus 

(6.1) R = {z: 0.2 < Izl < 11. 

Define 

(6.2) I(z) = - (z) 

We evaluate I(z) as a function of JzJ, see (3.2) and (3.3), and see where the maximum 
occurs in [0.2, 1], see Table 1. Here, JR(z) is evaluated with the aid of (2.2) and (2.7). 
Observe that for the special case D = R the powers {z'}l -.o, n -1, are already 
orthogonal. 

TABLE 1 

lzI I(Z) lIz I(Z) 

0.2 2.00000 0.5 4.03397 
0.222 2.00258 0.6 2.78008 
0.25 2.02576 0.7 2.40292 
0.333 2.78007 0.75 2.21434 
0.4 4.03397 0.8 2.02576 
0.45 4.40297 0.9 2.00257 
N 4.40362 1.0 2.00000 

1(z) 

5 
I(z) ='(Izj) = 1(0.2/ IzI) 

4 

3 

2 L ;zJ 
.2 .3 .4 .5 .6 .7 .8 .9 1. 

FIGuM 1 
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As is seen from Table 1 and Fig. 1, the maximum of I(z) occurs at lzl = (0.2)1/2, in 

agreement with Theorem 3.1, especially (3.4) is also satisfied here. 
Example 2. Let D be a nonconcentric annulus 

(6.3) D = {z: Izl < p} Cz {zz - ml > Pi), p, m, Pi > 0, p> m + PI 

The function 

(6.4) f(z) = (az + p)/(z + ap), 
where 

a = (2mp) {(p) - p2 m2) 
- ((p2 p2 - r2)2 -4 2)1/2} 

maps D onto the annulus R in (3.1). The modulus of D is 

(6.6) r = (am + P)/Pu. 

If p = 8, P, = 2, m = 4, then a = -1.8279344 and r = 0.3441312. Table 2 describes 
the results of our method. The moments here are computed analytically. Here, 2n is 
the number of functions {I z} "-, k $-1, needed for the orthonormalization and 2N 
is the number of the boundary points taken in the computation. 

TABLE 2 

n N r 

8 5 0.3458634245 
8 9 0.3441189642 

12 5 0.3442653716 
12 9 0.3441296234 
16 5 0.3441744523 
16 9 0.3441308326 

As is shown in Table 2, the pair (n, N) = (16, 9) gives the closest result to the theo- 
retical value r = 0.3441312. 

We consider fourfold symmetric domains in the following examples. 
Example 3. Let D be an elliptic ring 

(6.7) D= E1nE2, 

where 

(6.8) Ek = {(x, y) bbx2 + aky2 = akb} k = 1, 2, 

and E2 is the set theoretical complement of E2. We also assume 

(6.9) b2 < a2 < a,, b2 < b < a,. 

Especially, let 

(6.10) a, = 1.2, a2 = 0.3; bI = 1, b2 =0.2. 

The approximated modulus of D is given in Table 3. 
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Here, the moments are computed according to (5.2) and (5.7). We approximate 
M M 

A,1 _ ? xt'1 Im[z"n1] + E2 yA) Re[z"Wif1 v = 1, 2. 
k-I k-1 

Here, M = 46 and 

Zk= a, cos Ok + ib, sin Ok (v = 1, 2; k = 1, 2, * 46), 

Ok =(k- 1)r/90, k =1, 2, ,46, 

x<) = -a, sin0k, v= 1, 2, 

(r) = b, cos 0kv = 1, 2. 

TABLE 3 

n N r 

8 5 0.23234507814 
8 9 0.22965682330 

12 5 0.23388558847 
12 9 0.23087526739 

In the case of Table 3, the theoretical value of r is not known, however, it is conceivable 
that the pair (n, N) = (12, 9) gives the closest result to the modulus of D. From Tables 
2 and 3, we see that the number of boundary points 2N is more decisive than the num- 
ber of functions 2n. This is so because the number of functions 2n increases the round- 
off error (though to a certain degree it decreases the truncation error), while the number 
of boundary points 2N refines the location of the maximum point in order to yield a 
more accurate value of the modulus r, see (4.23) and (4.24). Also, because the boundary 
is analytic, few functions are needed for the approximation. 

Example 4. Let D be a confocal elliptic ring, that is D is given as in (6.7)-(6.9), but 

(6.11) al-bi = a2-b2. 

In this case, the function 

(6.12) f(z)= z + (Z2 + b 2 
- 

a2 -b2 

maps D onto the annulus R in (3.1). The modulus of D is given by 

(6.13) r a-b1 - a2 a2-b2 a, + b1 

For (al, b1) = (11, 9) and (a2, b2) = (7, 3), the modulus r is . The approximated 
modulus of D is given in Table 4. Here the moments are evaluated exactly as in 
Example 3. 
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TABLE 4 

n N r 

8 5 0.48390541188 
8 9 0.49686407352 

12 5 0.48863028044 
12 9 0.49692203724 

Again, the pair (n, N) = (12, 9) in Table 4 gives the closest result to the theoretical 
value r = 0.5. 

Example 5. Let D be a square of side a inside a circle of radius p, that is 

(6.14) D = {z: izj < PI n t(x, y): |xj > a/2, Iyj > a/2}, V(2p)1/2 > a. 

Table 5 gives the approximated modulus of D, where (p, a) = (7.7, 10). 
The moments are computed according to (5.2) and (5.7). A11 is computed an- 

alytically while A21 is approximated by the Gaussian quadrature rule (M = 48 points) 
(see [3], [5]). 

TABLE 5 

n N r 

8 5 0.77692966148 
8 9 0.78102948051 

12 5 0.77929462853 
12 9 0.78114364275 

Again the theoretical value of r is not known; however, we expect that the value 
0.7811 gives a good approximation to the exact value of the modulus of D. 

Table 6 gives the approximated modulus of D where (p, a) = (1, 1). 

TABLE 6 

n N r 

8 5 0.57924613312 
8 9 0.58296427281 

12 5 0.57963805403 
12 9 0.58302389835 

In [7, pp. 206-207 (Table 20)], the approximate modulus for this case is 0.583024 
(= 1/1.715195). Thus, we expect that the value 0.583 is a good approximation of the 
modulus of D, where (p, a) = (1, 1). 
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Example 6. Let D be the domain bounded by two concentric squares of sides a, 
and a2, (a2 > aj), around the origin. For the pair (a,, a2) = (a, 1), a < 1, the first seven 
orthonormal functions are given by 

P,(z) = 1/2(1 - a2)1,12 P2(z) = (A/3/2(l -a ) )z 

P3(z) = ((45)1/2/(112(1 -a6)) 

P4(z) = (a/2((1 -a2)(1 -aa6))(2 

*(98(2 + 'r)(1 -a")- 1260(3 - r)2a2(1 -a2))1/2)g(Z) 

(6.15) g(z) = 45(7- 3)(1 - a2)z2 + 28(1 -a6)z2, 

Pa(z) = ((35)1/2/(96(1 - a8))1/2) 3 

P6(z) = (4a2/((37r + 8)(1 -a4))1/2)Z-3 

P7(Z) = (A/7/(l - a2)1/2. (5312(1 -a2)(1 -a') - 448(1 -a )2)2)f(z)> 

f(z) = 4(1 - a6) + 15(1 - a2)z4. 

A more complicated expression is obtained for P8. From these functions, we can form 
the kernel function and the conformal invariant JD(Z) in (2.7), thus, we can determine 
the modulus of D; in particular, for the pair (a, 1) = (0.2, 1), (6.15) takes the form 

P,(z) = 0.5103103630798z ?, 

P2(z) = 0.8667190566019 z , 

P3(z) = 0.6338859757222Z2, 

(6.16) P4(z) = 0.2783974154755z 2 + 0.1274321780863 Z-2, 

P5(z) = 0.6038081372995 Z3, 

P8(z) = 0.3836049205974z -3, 

P7(Z) = 0.1583600026160 z? + 0.5701324978974 Z'. 

In addition, we have 

(6.17) P8(z) = -0.2316641369540z 0 
- 0.7901077544546.z + 0.1006646899038z-. 

These functions were obtained by an exact integration of the corresponding moments, 
while most -of our moments were computed by the Gaussian quadrature rule (48 
points). Obviously, this integration is not exact for negative powers of z. However, it 
is exact for each polynomial of degree ?2.48 -1 = 95. Accordingly, the Gaussian 
rule yields the exact value of the polynomials P,(z), P2(z), P3(z), Pa(z), P7(z) while it 
gives the approximated value of P4(z), P.(z), P8(z). Table 7 describes the modulus r of 
D for the pair (0.2, 1) achieved by the two methods of integration. Here, 2n = 8, and 
we took N = 3. 

The exact value of r is not known in this case. However, it is clear that since the 
number of the orthonormal functions is very small, the values of Table 7 give bad 
approximations to the modulus r. 
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TABLE 7 

Integration n N r 

Analytic 4 3 0.21471723637 
Gauss (48 Points) 4 3 0.21471720316 

Table 8 gives the modulus r of D for the same pair (0.2, 1) where the Gaussian quad- 
rature rule (48 points) is applied, but a larger number of orthonormal functions is used. 

TABLE 8 

n N r 

8 3 0.49958185221 
8 5 0.51632857424 

16 3 0.49243158857 
16 5 0.50896817010 

From Table 8 we see that the value 0.509 gives a reasonable estimate for the modulus 
of D with the pair (0.2, 1). The approximate modulus of D in this case could also be 
computed by using differences (see [9]). 

Appendix. We now prove the assertion made in the footnote of p. 748. For the 
sake of simplicity, let us assume that C1 and C2 are analytic curves. It will be clear that 
this assumption could be weakened considerably; for example, it is sufficient to require 
that C1 and C2 are piecewise analytic curves. 

Suppose D is in the w-plane and is the conformal image of the annulus R = 

{z: r < lzl < 11 ,0 < r < 1, by the conformal mapping w = f(z). Each level line in D 
is an image of a circle lzl = p, r < p < 1. If z = pe'0 describes this circle in the 
positive sense and its image is starshaped with respect to w = 0, then the argument so 
of the image pointf(z) = Xe"O must vary in the same direction. Thus 

(A.1i) adpla A 2= o. 

Conversely, if (A. 1) holds, then the considered curve is starshaped. Equivalently, (A. 1) 
can be written as 

(A.2) Re{ Zf(())} > , z = pea, 

(r < p < 1), and (A.2) is a necessary and sufficient condition for the level curve to be 
starshaped. 

By assumption, C, (v = 1, 2) are analytic, therefore, w = f(z) is conformal from 
A = {z: r < lzl < 1I onto the closure of D, D. Consequently, if C, (v = 1, 2) are 
starshaped with respect to w = 0, then (A.2) holds for p = r, 1. Since 0 (E D, it 
follows that zt'(z)/f(z) is analytic on k, and so Re{zf'(z)/f(z)} is harmonic on A. 
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1A' the minimum principle for harmonic functions, (A.2) holds throughout A, 
and, heh be, each level curve in D is starshaped With respect to w = 0. 
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